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Abstract

The classical limit problem of quantum mechanics is revisited on the basis of
a scheme that enables a quantitative study of the way the quantum–classical
agreement emerges while going through the intermediate mass range between
the microscopic and the macroscopic domains. As a specific application of such
a scheme, we investigate the classical limit of a quantum time distribution—an
area of study that has remained largely unexplored. For this purpose, we focus
on the arrival time distribution in order to examine the way the observable
results pertaining to the quantum arrival time distribution which is defined in
terms of the probability current density gradually approach the relevant classical
statistical results for an ensemble that corresponds to a Gaussian wave packet
evolving in a linear potential.

PACS number: 03.65.Ta

(Some figures in this article are in colour only in the electronic version)

1. Introduction and the underlying basic scheme

Over the years, the analysis of various aspects of the classical/macroscopic limit of quantum
mechanics has attracted considerable attention [1–10]. Broadly speaking, there are two
distinct strands of investigations related to the classical limit of quantum mechanics. One
direction of study has been to delineate the way ‘classical-like behavior’ can be obtained for
any quantum mechanical micro-system under suitable conditions. The other line of study
seeks to probe the macroscopic range of validity of quantum mechanics by examining to what
extent the quantum mechanical results in a suitably defined macroscopic regime agree with
the corresponding results derived from classical mechanics. It is from the latter perspective
that, in this paper, we investigate the quantum–classical correspondence for an observable
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time distribution—an issue that has been hitherto neglected in the context of the classical limit
aspect of quantum mechanics.

A particular aspect of the present paper is that the quantum–classical transition is probed
in a quantitative way. For this purpose, in order to characterize the relevant macroscopic
domain, we use ‘mass’ as the parameter that is varied to study the way the convergence of the
classical and the corresponding quantum results occurs by approaching the large mass values
while going through the intermediate range. At this stage, some relevant remarks would be
appropriate about the legitimacy of treating ‘mass’ as a parameter, instead of taking it to be an
operator.

First, note that the scope of our analysis is restricted to the nonrelativistic domain, being
based on the Galilean invariant Schrödinger equation for the spin-0 particles. Now, given
the Galilean invariance of the Schrödinger equation, one may recall an interesting theorem
due to Bargmann [11] which states that, in nonrelativistic quantum mechanics, one cannot
have a coherent superposition of states of different masses (for an elegant proof of this
theorem, using a suitable sequence of Galilean constant velocity transformations, see, for
example, Kaempffer [12]). An insight into the physical justification for this theorem has been
provided by Greenberger [13] who showed that this restriction arises essentially because in the
nonrelativistic domain, the ‘coordinate time’ does not differ from the ‘proper time’ (measured
in the moving frame). One is, therefore, entitled to treat ‘mass’ as a parameter, as long as the
study is restricted to the framework of nonrelativistic quantum mechanics.

Next, coming to the conceptual basis of the quantum–classical comparison scheme that
will be specifically used in this paper, we first note the following. While the predictions of the
quantum mechanical formalism are verifiable pertaining to essentially an ensemble of particles
[14, 15], classical mechanics can describe the properties of an ensemble of particles as well
as of a single particle. Thus, the comparison between these two mechanics is operationally
unambiguous provided one compares their statistical predictions for the dynamical evolutions
of the same given initial ensemble.

It is in this spirit that we adopt the scheme used in this paper [16] where the quantum
and the classical evolutions are compared by starting from the same initial ensemble that
has the specified position and momentum distributions obtained from a given wavefunction.
While the quantum evolution is in accordance with the Schrödinger equation, the classical
evolution of the given initial ensemble is calculated in terms of the classical phase space
dynamics based on Liouville’s equation. However, a critical point in the classical calculation
is the following. The initial phase space distribution for an ensemble is not uniquely fixed even
if the position and the momentum distributions are specified. But, since in classical mechanics,
the time evolution of all the usual observable properties of an ensemble are determined by
the initial positions and momenta which are mutually independent variables, an initial phase
space distribution D0(x0, p0, t = 0) evolving under classical dynamics can be written, in the
simplest possible choice, as a product of the position and momentum distributions pertaining
to a given initial wavefunction �(x0, t = 0), given by

D0(x0, p0, t = 0) = |�(x0, 0)|2|�(p0, 0)|2, (1)

where the variables x0 and p0 are the initial positions and momenta of the particles, and
�(p0, 0) is the Fourier transform of �(x0, 0).

Based on this specific quantum–classical comparison scheme, the plan of this paper is
as follows. In section 2 we discuss the basic features of both the quantum and the classical
procedures for defining the arrival time distribution using the probability current density.
Here we may note that in recent years, the quantum mechanical distributions of various types
of time like the tunneling time, arrival time, transit time, decay time, and so on have been

2



J. Phys. A: Math. Theor. 42 (2009) 165302 D Home et al

widely studied; for useful reviews, see, for example, Muga et al [17] and Olkhovski et al
[18]. In the light of this flourishing line of works, the classical limit aspect of such quantum
time distributions deserves to be a germane area of study. To this end, in this paper, we
initiate such an investigation by restricting our attention to the classical limit of a particular
form of quantum arrival time distribution that is defined in terms of the probability current
density [17, 19–21]—our analysis being contingent upon a specific scheme for the quantum–
classical comparison, and is couched in terms of a Gaussian wave packet propagating in a
linear potential, while such a study, in principle, can be extended for other forms of time
distributions, using wavefunctions of various types, and in the context of any other potential.

In section 3, the quantum–classical correspondence of an arrival time distribution is
treated in detail in terms of a general Gaussian wave packet (that does not correspond to
the minimum value of the uncertainty product �x�p) which evolves in the presence of a
one-dimensional linear potential. The salient feature of this work is a quantitative study
that is aimed at delineating the mass range over which the quantum results pertaining to the
time distribution under consideration gradually concur with their classical counterpart—the
representative relevant results for the mean arrival time and the associated fluctuation being
given in section 4. In the concluding section 5 some future directions of work are indicated.

But, before proceeding further, for the sake of completeness, some remarks are in order
to stress the conceptual inadequacy of the usual textbook definition of the classical limit of
quantum mechanics given in terms of h̄ → 0. First, the notion that h̄ is ‘small’ has no absolute
meaning because its value depends on the system of units [22]. Further, wavefunctions are, in
general, highly nonanalytic in the neighborhood of the limit point h̄ → 0 [23]. This results in
the essential singularity of the quantum mechanically computed quantities at h̄ → 0. It is, thus,
not possible to regard quantum mechanics as a perturbative extension of classical mechanics
in the same sense as special relativity can be viewed as related to Newtonian mechanics
by a convergent perturbation expansion in v/c [24]. Hence, the only sensible operational
formulation of the h̄ → 0 classical limit condition would be to consider a dimensionless
parameter of the form h̄/S � 1 where S is the ‘action quantity’ relevant to a given situation.
But, then, within this approach, an element of arbitrariness comes into play in the choice of
the appropriate ‘action quantity’ to be used in any given example for probing the classical
limit of quantum mechanics. In contrast, the procedure adopted in our paper for studying the
macrolimit of quantum mechanics by varying ‘mass’ as the relevant parameter is devoid of
any such arbitrariness.

2. Arrival time distributions in quantum and classical dynamics

First, let us consider the quantum mechanical case. For simplicity, throughout this paper,
we restrict the treatment to one spatial dimension. We begin with the non-relativistic
quantum mechanical description of the flow of probability, expressed in terms of the position
space distribution, that is governed by the continuity equation (derived from the Schrödinger
equation) given by

∂

∂t
|�(x, t)|2 + ∇.J (x, t) = 0. (2)

The quantity J(x, t) = ih̄
2m

(�∇�∗ − �∗∇�), called the probability current density,
characterizes this flow of probability. It is this current density that has been used in a number
of studies to define the arrival time distribution for free particles [17, 19, 20]. By interpreting
the equation of continuity in terms of the flow of physical probability, in conjunction with
using the Born interpretation for the squared modulus of the wavefunction as denoting the
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probability density, it has been suggested that the mean quantum arrival time of the particles
reaching a detector located at x = X may be written as

〈tQ〉 =
∫ ∞

0 |J (x = X, t)|t dt∫ ∞
0 |J (x = X, t)| dt

, (3)

whence the corresponding fluctuation (�t)Q is given by the root mean square deviation

(�t)Q =
√〈

t2
Q

〉 − 〈tQ〉2.

The definition of the mean arrival time specified by equation (3) is, however, not a uniquely
derivable result within standard quantum mechanics. In fact, different schemes for defining
the quantum arrival time distribution have been discussed in the literature; for example, using
Kijowski’s axiomatic approach [25], or by invoking the time-of-arrival operator method in
conjunction with the POVM approach [26], by constructing self-adjoint variants of the time-
of-arrival operator [27], or by using the Bohmian causal model [28]. However, the scope of
the present paper is confined to only the probability current density approach [17, 19, 20].
Here it may be noted that in certain situations, the quantity J (X, t) can be negative during
some time interval, even if the initial wave function has the positive momentum support—
this is called the backflow effect [29]. It is in order to take this effect into account that the
modulus of the quantity J (X, t) (suitably normalized) is taken for specifying 〈tQ〉 as given by
equation (3).

Next, we note that the Schrödinger probability current defined in terms of the continuity
equation has an inherent ambiguity. This is because the continuity equation remains satisfied
with the addition of any divergence free term to the probability current. On this point, Holland
[30] has shown the uniqueness of the probability current for the spin-1/2 particles using the
Dirac equation. On the other hand, for the spin-0 particles, using the Kemmer equation
[31], it has been demonstrated [32] that the non-relativistic limit of the Kemmer probability
current is unique, whose expression turns out to be that of the Schrödinger probability
current. Hence, for the spin-0 particles, the Schrödinger probability current can be used for
computing the arrival time distribution. Thus, even though the Schrödinger probability current
is not directly observable, having no correspondence with an appropriate self-adjoint operator
[17, 33], it can have an observable manifestation for the spin-0 particles through the arrival time
distribution. The latter is, in practice, a measurable quantity—this point being underscored
in various experimental contexts involving the time-of-flight measurements [34] concerning,
for example, cold trapped atoms, with the quantum probability current being invoked in the
relevant theoretical analysis [35]. Besides, several theoretical models of ‘quantum clock’
[21, 36] have been studied that bring out the empirical relevance of time distributions such as
the arrival/transit time.

Now, let us examine the classical procedure for computing the arrival time distribution.
For this, a classical statistical ensemble of particles is described by the phase space density
function D(x, p, t). Consequently, the classical position and momentum distribution functions
are respectively ρC(x, t) = ∫

D(x, p, t) dp and ρC(p, t) = ∫
D(x, p, t) dx, while D(x, p, t)

satisfies the classical Liouville equation given by
∂D(x, p, t)

∂t
+ ẋ

∂D(x, p, t)

∂x
+ ṗ

∂D(x, p, t)

∂p
= 0. (4)

Integrating the above equation with respect to p one obtains
∂ρC(x, t)

∂t
+

∂

∂x

[
1

m
p̄(x, t)ρC(x, t)

]
= 0, (5)

where p̄ = ∫
pD(x, p, t) dp

/∫
D(x, p, t) dp is the ensemble average of the momentum

values of the individual particles.
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Defining v̄(x, t) = p̄(x, t)/m as the ensemble average of the individual velocity values,
we obtain

∂ρC(x, t)

∂t
+

∂

∂x
JC(x, t) = 0, (6)

where JC(x, t) = ρC(x, t)v̄(x, t). Thus, equation (6) can be regarded as the equation of
continuity characterizing the classical time evolution of a statistical ensemble of particles.
Using the expressions for ρC(x, t) and v̄(x, t), the classical probability current density can
then be written as

JC(x, t) = 1

m

∫
pD(x, p, t) dp. (7)

Given this statistical description, the mean classical arrival time is given by

〈tC〉 =
∫ ∞

0 |JC(x = X, t)|t dt∫ ∞
0 |JC(x = X, t)| dt

, (8)

whence the corresponding fluctuation (�t)C is given by the root-mean-square deviation

(�t)C =
√〈

t2
C

〉 − 〈tC〉2.

3. Quantum–classical correspondence for a non-minimum-uncertainty-product wave

packet propagating in a linear potential

In this section, we compare the quantum and the classical results for the position, momentum
and time distributions by considering a general non-minimum-uncertainty-product Gaussian
wave packet propagating in a linear potential (V = Kx).

Here we take the initial wave function �(x, 0) and its Fourier transform �(p, 0) to be
given by

�(x, 0) = 1

(2πσ0
2)1/4

√
1 + iC

exp

[
− x2

4σ0
2(1 + iC)

+ ikx

]
, (9)

�(p, 0) =
(

2σ0
2

πh̄2

)1/4

exp

[
−σ0

2(p − p̄)2

h̄2 (1 + iC)

]
, (10)

where the group velocity of the wave packet u = h̄k/m = p̄/m.
Note that we have taken an initial Gaussian wavefunction �(x, 0) which is not a minimum

uncertainty state, i.e., �x�p = (h̄/2)
√

1 + C2 > h̄/2, where C is any real number—such
a non-minimum-uncertainty-product state corresponds to what is known as a squeezed state
[37]. In the presence of a linear potential, for such an initial wavefunction, the Schrödinger
time evolved wavefunction �(x, t), and consequently the probability current density JQ(x, t),
are respectively given by

�(x, t) = 1(
2πσ0

2
)1/4

√
1 + i

(
C + h̄t

2mσ0
2

) exp

[
im

h̄

(
u − Kt

m

) (
x − ut

2

)
− iK2t3

6mh̄

]

× exp

{
−

(
x − ut + 1

2
K
m

t2
)2

4σ0
2
[
1 + i

(
C + h̄t

2mσ0
2

)]
}

, (11)

JQ(x, t) = ρQ(x, t)

{
u − Kt

m
+

h̄
(
C + h̄t

2mσ0
2

)(
x − ut + 1

2
K
m

t2
)

2mσ 2
Q(t)

}
, (12)
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where ρQ(x, t) is the quantum mechanical position probability distribution function given by

ρQ(x, t) = |�(x, t)|2 = 1√
2πσ 2

Q(t)
exp

{
−

(
x − ut + 1

2
K
m

t2
)2

2σ 2
Q(t)

}
, (13)

where σQ(t) = σ0

√
1 +

(
C + h̄t

2mσ0
2

)2
is the width of a quantum wave packet that corresponds

to the position probability distribution at any given instant t.
Next, we focus on calculating the probability current density J (x, t) using the classical

statistical evolution. For this purpose, in accordance with equation (1), it is crucial that the
initial phase space distribution D0(x0, p0, t = 0) to be used for the classical calculations is
fixed by the initial position and momentum distributions of the ensemble that are taken to be
the same as the corresponding initial quantum distributions obtained from equations (9) and
(10), respectively. Accordingly, the expression for D0(x0, p0, t = 0) is given by

D0(x0, p0, 0) = |�(x0, 0)|2|�(p0, 0)|2

= 1

πh̄
√

1 + C2
exp

{
− x2

0

2σ0
2(1 + C2)

− 2σ0
2(p0 − p̄)2

h̄2

}
. (14)

Now, in order to obtain the time-evolved classical phase space density function D(x, p, t),
we consider the classical Hamiltonian for the freely moving particles H = p2/2m + Kx, and
Hamilton’s equations given by x = p0t/m − 1

2
K
m

t2 + x0 and p = p0 − Kt . Then one can
write x0 = x − p0t/m + 1

2
K
m

t2 and p0 = p + Kt . By substituting these values of x0 and p0 in
the expression for D0(x0, p0, 0) given by equation (14), we obtain the time-evolved classical
phase space distribution function D(x, p, t) given by

D(x, p, t) = 1

πh̄
√

1 + C2
exp

{
−

(
x − pt

m
− 1

2
K
m

t2
)2

2σ0
2(1 + C2)

− 2σ0
2(p + Kt − p̄)2

h̄2

}
. (15)

Now, substituting into equation (7) the expression for the time-evolved phase space
distribution function D(x, p, t) from equation (15), the probability current density pertaining
to this classical ensemble is given by

JC(x, t) = ρC(x, t)

{
u − Kt

m
+

(
x − ut + 1

2
K
m

t2
)

h̄2t
2mσ0

2

2mσ 2
C(t)

}
, (16)

whence the position probability distribution for this classical ensemble is given by

ρC(x, t) =
∫

D(x, p, t) dp = 1√
2πσ 2

C(t)

× exp

{
−

(
x − ut + 1

2
K
m

t2
)2

2σ 2
C(t)

}
, (17)

where σC(t) = σ0

√
1 + C2 + h̄2t2

4m2σ0
4 is the time-varying width of the classical position

distribution function at an instant t.
Note that this spreading of the statistical distribution embodied in equation (17) ensues

from the classical Liouville evolution, and is, in general, different from the corresponding
quantum spreading of a wave packet (σQ(t) 
= σC(t)), unless C = 0. This means that the
quantum and the classical spreadings of the position distributions agree only if the initial
Gaussian statistical distribution corresponds to the minimum-uncertainty-product, i.e., if
initially, �x�p = h̄/2. It therefore needs stressing that such a spreading is not essentially a
quantum mechanical property of a propagating wave packet, but is a generic feature associated
with a time-varying position probability distribution, quantum or classical. While for the
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Figure 1. The time variations of the quantum and classical probability current densities JQ(x, t)

and JC(x, t) are plotted for the values of m = 1 a.m.u., m = 50 a.m.u. and m = 720 a.m.u.,
corresponding to σ0 = 10−5 cm, u = 104 cm s−1, C = 50 and X = 1 cm. The bold and the
dashed curves represent the quantum and classical cases, respectively.

positive values of C, σQ(t) is larger than σC(t) for all times, for the negative values of
C, σQ(t) is always smaller than σC(t).

On the other hand, equations (12) and (16) clearly show that the quantum and the classical
probability currents are, in general, not the same , i.e., JQ(x, t) 
= JC(x, t). But, if one
imposes the minimum-uncertainty-product condition C = 0, the quantum and the classical
probability currents become the same, i.e., JQ(x, t) = JC(x, t). Also, interestingly, this
condition C = 0 ensures an exact agreement without any limiting condition between the
quantum and the classical position probability distributions given by equations (13) and (17),
respectively.

4. Results of some relevant quantitative studies and their implications

In order to make a systematic study of the way an agreement emerges between the quantum
and the classical probability currents given by equations (12) and (16) respectively, thereby
leading to a matching of the corresponding mean arrival times and their fluctuations for the
non-minimum-uncertainty-product Gaussian wavefunction (C 
= 0) under consideration, we
proceed as follows. First, for a fixed value of C, we compare the plots of the quantum and the
classical probability currents by varying the values of the masses. As representative studies,
we take C = 50 and the choices of the masses to be m = 1 a.m.u. (H atom), m = 50 a.m.u.
and m = 720 a.m.u. (C60 molecule). It is seen from figure 1 that while for m = 50 a.m.u.
the disagreement between the quantum and the classical plots diminishes as compared to that
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Figure 2. The time variations of the quantum and classical probability current densities JQ(x, t)

and JC(x, t) are plotted for the values of C = 100, C = 10 and C = 1 by taking the mass =
1 a.m.u. corresponding to σ0 = 10−5 cm, u = 104 cm s−1 and X = 1 cm. The bold and the dashed
curves represent the quantum and classical cases, respectively.

for m = 1 a.m.u., a complete agreement is ensured from the masses around m = 720 a.m.u.
(C60 molecule). In order to complement this line of study, another comparison is made
between the plots of the quantum and the classical probability currents for a fixed mass,
say, m = 1 a.m.u. by varying the values of C ranging over C = 100, C = 10 and C = 1.
Interestingly, it is seen from figure 2 that while for C = 100, the quantum and the classical
curves appreciably differ, this difference gradually diminishes with the decreasing values of
C (i.e., as the departure from the minimum-uncertainty-product Gaussian wavefunction gets
minimized), with the difference becoming negligibly small as the value C = 1 is reached.

Now, we come to a crucial aspect of this quantitative study; i.e., the probing of the range of
masses over which an agreement emerges between the quantum and the classical mean arrival
times, as well as between their respective fluctuations. For this we proceed as follows. We take
three different values of C, namely, C = 1000, C = 500 and C = 100, and, for any such given
value of C, we vary the masses ranging from 1 a.m.u. (H atom) to the heavier molecules, say,
biomolecules with molecular weights around 103–104 a.m.u. (i.e., biomolecules comprising
approximately 10–300 base pairs of DNA molecules, where 1 base pair ≈650 a.m.u.).

Then, from the relevant computational results as given in table 1, corresponding to
C = 1000, it is seen that an appreciable difference between the quantum and the classical
mean arrival times, as well as a significant difference between their respective fluctuations
persists up to masses around 103 a.m.u., after which these differences gradually diminish.
Eventually, these differences disappear beyond the mass range of 104 a.m.u. (say, for the
protein molecule such as cytochrome-c having the mass 12×103 a.m.u.). It may also be noted
that while the variations of both the quantities 〈t〉C and (�t)C as the mass changes saturate
at the mass value of 102 a.m.u., the corresponding variations of both the quantities 〈t〉Q and
(�t)Q with mass saturate around the mass value 104 a.m.u..

8
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Table 1. The comparisons between quantum and classical mean arrival times and their respective
fluctuations are given for the different values of mass, corresponding to a fixed value of C = 1000,
and the other relevant parameters being u = 10 cm s−1, X = 0.1 cm, σ0 = 10−4 cm.

Mass (a.m.u.) 〈tC〉 (ms) 〈tQ〉 (ms) (�t)C (ms) (�t)Q (ms)

1 68.684 141.671 16.592 22.543
5 13.008 14.575 8.069 9.523
25 12.881 13.172 7.940 8.199
50 12.877 13.025 7.936 8.064
100 12.876 12.947 7.935 7.999
500 12.876 12.890 7.935 7.947
1000 12.876 12.883 7.935 7.941
5000 12.876 12.877 7.935 7.936
10000 12.876 12.876 7.935 7.935

Table 2. The comparisons between quantum and classical mean arrival times and their respective
fluctuations are given for the different values of mass, corresponding to a fixed value of C = 500,
and the other relevant parameters being u = 10 cm s−1, X = 0.1 cm, σ0 = 10−4 cm.

Mass (a.m.u.) 〈tC〉 (ms) 〈tQ〉 (ms) (�t)C (ms) (�t)Q (ms)

1 115.021 150.207 22.686 24.223
5 10.397 11.324 4.808 5.654
25 10.281 10.456 4.711 4.865
50 10.277 10.365 4.708 4.784
100 10.276 10.321 4.707 4.745
500 10.276 10.285 4.707 4.715
1000 10.276 10.281 4.707 4.711
5000 10.276 10.276 4.707 4.707

Table 3. The comparisons between quantum and classical mean arrival times and their respective
fluctuations are given for the different values of mass, corresponding to a fixed value of C = 100,
and the other relevant parameters being u = 10 cm s−1, X = 0.1 cm, σ0 = 10−4 cm.

Mass (a.m.u.) 〈tC〉 (ms) 〈tQ〉 (ms) (�t)C (ms) (�t)Q (ms)

1 201.172 187.203 28.556 27.540
5 10.124 10.321 1.206 1.697
25 10.037 10.126 1.064 1.329
50 10.001 10.002 1.003 1.128
100 10.000 10.009 1.000 1.032
500 10.000 10.002 1.000 1.006
1000 10.000 10.000 1.000 1.000

Results similar to those given in table 1 are presented in tables 2 and 3 for C = 500
and C = 100, respectively. While for C = 500, the agreement between 〈t〉C and 〈t〉Q, as
well as between (�t)C and (�t)Q emerges from the value of m = 5000 a.m.u. (say, for the
insulin molecule having m = 5808 a.m.u.), for C = 100, such an agreement is ensured from
m = 1000 a.m.u. (say, for the peptide hormone molecule oxytocin having m = 1007 a.m.u.).

It is therefore seen from these numerical computations that for a given set of values of
the parameters u,X and σ0, the greater the value of C signifying an increasing deviation
from the minimum-uncertainty-product Gaussian wave packet, the larger is the value of mass
from which the quantum–classical agreement occurs for both the mean arrival time and
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its fluctuation. In other words, for the type of example studied here, by increasing the values
of the parameter C, one can extend the range of mass values covering the heavier molecules
for which appreciable disagreements can be found between the quantum and the classical
values of the mean arrival time and its fluctuation. Thus, as regards the possibility of the
relevant empirical studies, it would be interesting to probe the experimental realizability of
the Gaussian wave packets that are characterized by large values of the parameter C.

5. Concluding remarks

An application of the specific quantum–classical comparison scheme underlying this paper
is currently under consideration by using such a scheme for analyzing the classical limit of
quantum time distributions which are appropriately defined in the context of the harmonic
oscillator potential—this study intends to use both the minimum as well as the non-
minimum-uncertainty-product initial wave packets, including the case of the initial minimum-
uncertainty-product wave packet having a specific width that corresponds to what is known
as Schrödinger’s coherent state. Besides, further investigations need to be pursued along, say,
the following directions:

(a) The treatment presented in this paper uses essentially a Gaussian wave packet. It should,
therefore, be interesting to study in terms of a suitably constructed non-Gaussian wave
packet, or by using a superposition of wave packets, the extent to which the calculated
quantitative results are dependent on the form of the wave packet being strictly Gaussian.
Such a study, also using forms of potential other than the linear one, would be particularly
helpful for examining the empirical feasibility of tests related to the type of example
discussed in this paper.

(b) Since the initial phase space distribution function used in our classical calculation is not
uniquely fixed even if the position and momentum distribution functions are specified
for a given wavefunction, it would be instructive to compare the quantitative results
of this paper with the corresponding results for choices of the initial classical phase
space distribution function other than the simplest possible choice we have used for the
given position and momentum distributions. As a special case of such a choice, for
a given non-minimum-uncertainty-product Gaussian wavefunction, one may adopt the
prescription given by Wigner [38] for fixing the initial phase space distribution function
to be used in our calculation. Studies along this line, based on the specific quantum–
classical comparison scheme that has been invoked in the present paper, should be useful
in throwing light on the extent to which the delineation of the mass values over which
the quantum–classical agreement emerges for the mean arrival time and its fluctuation is
sensitive to the choice of the initial classical phase space distribution.

(c) The quantum arrival time distribution used in this paper has been calculated specifically
in terms of the probability current density. Comprehensive investigations are required
in order to compare the quantitative results given in this paper with those obtained from
various other schemes [17–18, 25–28] that have been suggested for defining the quantum
arrival time distribution. This line of study would have an added ramification as regards
the important issue concerning the possibility of discriminating between the different
quantum approaches that have been proposed to compute the arrival time distribution.

(d) We note that the time-of-flight image method [34] has been widely employed for inferring
the temperature of a cloud of trapped atoms in the experiments which involve the laser
cooling of atoms. In this context, a quantitative study of the way the semi-classically
computed time-of-flight distributions match with the corresponding quantum distributions
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in the limits of large mass and high temperature is of considerable interest [35]. It should,
therefore, be relevant to take a fresh look at this issue by invoking the specific scheme for
quantum–classical comparison that has been used in this paper.
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